
Content Processor Development Kit Agent Driver
Developer Guide

Legal Information
Tarari is a trademark or registered trademark of Tarari, Inc. or its subsidiaries in the United States and other countries.

Information in this document is provided in connection with Tarari products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Tarari’s Terms and Conditions
of Sale for such products, Tarari assumes no liability whatsoever, and Tarari disclaims any express or implied warranty, relating
to sale and/or use of Tarari products including liability or warranties relating to fitness for a particular purpose, merchantability,
or infringement of any patent, copyright, or other intellectual property right. Tarari products are not intended for use in
medical, life-saving, or life-sustaining applications. Tarari may make changes to specifications and product descriptions at any
time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked as “reserved” or “undefined.”
Tarari reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

Copyright © 2002 Tarari, Inc. All rights reserved.

* Other names and brands may be claimed as the property of others.

** Performance tests and ratings are measured using specific computer systems and/or components, and reflect the
approximate performance of Tarari products as measured by those tests. Any difference in system hardware or software
design or configuration can affect actual performance. Buyers should consult other sources of information to evaluate the
performance of components they are considering purchasing. For more information on performance tests, and on the
performance of Tarari products, contact us as indicated below.

Tarari Contact Information
Additional information: info@tarari.com

Internet: http://www.tarari.com/

Telephone: (858) 385-5131

Fax: (858) 385-5129

Office hours: 8 A.M. to 5 P.M. Pacific Time

Documentation questions or comments: documentation@tarari.com

Tarari, Inc.
10908 Technology Place
San Diego, CA 92127-1874
USA

A02209-001

TARARI CONFIDENTIAL

 Contents

Concepts 1
Introduction . 1

Terms . 2
CPDK Overview . 3

Agent Interface Compatibility . 5
Introduction to the Agent Bus Interface . 5
Introduction to the Standard Agent Interface . 6

Content Processing Platform . 7
Content Processing Controller . 8
Content Processing Engines. 8
Software Model. 8

CPP Data Flow. 8
CPP Reconfiguration Model. 10
CPP Base Device Driver (BDD). 12
CPP Agent Device Drivers (ADDs) . 12

CPP Example . 12
BDD Responsibilities . 13

BDD to ADD Interface . 15
Overview . 15
Data Structures . 15

Architecture Dependent. 15
Architecture Independent . 16

Registration Calls and Callbacks . 17
Data Transfer Calls . 20
Performance Optimization Calls . 26
Raw Access Calls . 26

CONTENTS TARARI CONFIDENTIALiv

Standard Memory Use. 27
Basic Circular Queue Definition. 27
Queue Types . 27
Data Queue. 28
Input Header Format. 28

Common Commands. 29
Agent Specific Commands. 31

Output Header Format. 32
Standard Out-of-Band Communications . 33

Out-of-band Communication Channels. 33
Out-of-Band Communication Standard Formats . 33

Basic Format . 33
Out-of-Band Command Set . 34

Standard Agent Interface . 38
General Description. 38

Interrupts . 39
Linux CPP Architecture . 40

Data Structures . 40
API Calls . 40

Windows* CPP Architecture . 40

Index 41

TARARI CONFIDENTIAL

 Concepts

Introduction
This document describes:

• The memory management architecture for the Double Data Rate
Synchronous Dynamic Random Access Memory (DDR SDRAM) resources on
the Tarari Content Processing Platform (CPP) board

• A Standard Agent Interface (SAI), that drives this memory management
architecture

• The interface between the CPP Base Device Driver (BDD) and Agent Device
Drivers (ADDs)

• The configuration interface for the BDD

• A sample interface between an ADD and a user application

Both the Anti-Virus and XML acceleration Agents incorporate this memory
scheme, and the SAI, for communications between hardware and software.
Future development efforts, including those of third parties using the
Development Kit, must follow this architecture to maintain compatibility and
reduce the time to market.

Hardware and software engineers who develop Agents for the CPP board must
thoroughly understand the contents of this document, and its implications,
before undertaking any new development effort.

This document assumes that you, as the developer, know how to write Device
Drivers in the environment of your choice.

For CPP board installation instructions, refer to the Content Processing Platform
Installation Guide, Tarari part number A02202-001, or later.

CONCEPTS TARARI CONFIDENTIAL
Terms

2

Terms Table lists terms and acronyms used in this document.

Term Description
ABI Agent Bus Interface

ADD Agent Device Driver: The CPP has a fundamental device driver that can be accessed directly by
user-space applications. However, an ADD is layered on top of the basic device driver to provide
an efficient means of customizing an Agent’s interface.

Agent Acceleration Agent (Anti-Virus, XML, and the like). Each CPE can run up to two Agents.

API Application Program Interface: A set of interface points to a software resource

BDD Base Device Driver

Bitstream A continuous flow of binary digits (bits), through some form of communication (in this case, the
PCI bus), with no break or separations between the characters. A bitstream contains the Agent
Set, which is the information needed to install one or two Agents on the CPEs.

CCL Configuration and Control Logic: Logic internal to the CPC that manages reconfiguration of the
Agent CPEs

CPC Content Processing Controller: A logic component on the CPP board that acts as a bridge or
arbiter between the PCI bus, Agents, and the DDR SDRAM

CPE Content Processing Engine: One of two reconfigurable logic components on the CPP board.
Each CPE can run up to two Agents.

CPP Tarari’s Content Processing Platform, and the board on which it is installed

DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory: The CPP board’s main
memory.

DLL Dynamic Link Library: Executable code module that can be loaded on demand and linked at run
time, then unloaded when the code is no longer required.

DMAC Direct Memory Access Controller: The DMAC is a logical component of the CPC. It transfers data
between the CPP and system memory.

Dword A dword (double word) pointer points to 4 bytes of data at a time. For example: Pointer X initially
points to bytes 0-3. Once it increments by 1, Pointer X points to bytes 4-7.

EOF End of File
FIFO First in, first out

IOCTL Input/Output Control

ISR Interrupt Service Routine

OS Operating System

KLM Kernel Loadable Module: An extensible interface under Linux that dynamically inserts code into
the operating system kernel at runtime. Most device drivers are implemented as KLMs.

LOF Length of File
OS Operating System (typically Windows* or Linux)
Qword A qword (quad word) pointer points to 8 bytes of data at a time. For example: Pointer Y initially

points to bytes 0-7. Once it increments by 1, Pointer Y points to bytes 8-15.
SAI Standard Agent Interface
SOF Start of File

SRAM Static Random Access Memory: Low latency memory on the CPP board. Each Agent CPE has two
associated SRAM banks.

UA User Application

TMU Task Management Unit

Table 1: Terms Used in this Document

3TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

CPDK Overview
The Tarari Content Processor Development Kit (CPDK) is a combination of
hardware and software content processing building blocks that creates a flexible
platform designed to accelerate a variety of compute-intensive algorithms. The
CPDK leverages the standard PCI bus and operating system (OS) interfaces to
facilitate easy integration into servers and network appliances. The CPDK also
includes development tools and sample code designed to help developers to
quickly learn the technology.

Figure 1 shows how software applications can transport data that requires
compute-intensive operations into the hardware domain for accelerated
processing.

Figure 1: Processing Stack

In a typical CPDK project:

• Software developers write an Agent Device Driver and a DLL (or equivalent),
to connect the application to the CPP Base Driver.

• Hardware developers design the targeted hardware Agent(s), using a CPE
design methodology.

Hardware

Agent Device Driver

CPP Base Driver
Input Data

User
Space

Kernel
Space

Acceleration
Agent 2

Acceleration
Agent 3

Application/
Middleware

Acceleration
Agent 1

DLL

Output Data

CONCEPTS TARARI CONFIDENTIAL
CPDK Overview

4

At a lower level, software communicates with hardware by passing data from
host memory to the DDR SDRAM on the CPP board. Figure 2 shows the CPP
board’s resources and interconnections. The CPC contains a Direct Memory
Access Controller (DMAC) to move data from the PCI Bus to the DDR SDRAM at
high data rates. Data flows from the DDR SDRAM to one of the Agents, loaded
into a Content Processing Engine (CPE), using the CPC and the Agent Bus. After
processing, the CPC moves data back to the DDR SDRAM. The DMAC moves data
back to host memory using the PCI Bus.

For software to hardware out-of-band communications, the CPC uses a 32-bit
write-only register for each Agent. For hardware to software out-of-band
communications, the CPC uses a second 32-bit read-only register for each Agent.
To interrupt the software, Agents can load a third 32-bit interrupt status register.

Figure 2: CPP Board Block Diagram

The basic CPP hardware/software interface defines a single out-of-band
command. This command loads the Agent’s DDR SDRAM Base Address. During
Agent initialization, the CPP Base Driver uses this command to communicate its
memory base address. The Agent then accesses DDR SDRAM, using a physical
address it calculates by adding the Base Address to its local address. Hardware
and software communicate using the local address.

During Agent initialization, the CPP Base Driver copies the Agent’s total allocation
of DDR SDRAM to the Device Driver.

After Agent initialization, the Device Driver and Agent use the DDR SDRAM for all
in-band high bandwidth data communications. The Base Driver and CPP
Architecture place no further constraints upon this hardware and software pair,
other than the base address of memory (known only to hardware), and the total
allocation of memory (known only to software).

Content Processing Controller
(CPC)

PC
I B

us

PCI
Connector

Content
Processing

Engine (CPE)
or Agent FPGA

Content
Processing

Engine (CPE)
or Agent FPGA

DDR SDRAM

Agent Bus

Agent Bus

SRAM

SRAM

SRAM

SRAM

Memory Bus

A2
A

Bu
s

Agent Bus

Agent Bus

5TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

Agent Interface
Compatibility

Because the base architecture places few constraints on the DDR SDRAM, Agent
designers are free to use the memory in a way best suited for their specific
application. While this might lead to optimum memory efficiency and perhaps
even optimal memory bandwidth use, it can present two problems:

• Each Agent requires the design and development of a memory use
scheme. This leads to unnecessary re-design of hardware or software
interfaces for (at best) marginal gains in performance and efficiency. Most of
CPDK’s added value is the Agent itself, not the hardware or software
interface.

• Agents cannot communicate directly with each other. This severely limits
performance, because it prohibits process chaining due to incompatibilities
between one Agent and another. There are many applications in which new
Agents can be installed in the CPEs to further process the results of an
existing Agent. Without a consistent memory use architecture, a round trip
between host memory and DDR SDRAM is required for each Agent. This
increases latency, and unnecessarily consumes PCI bandwidth.

Introduction to
the Agent Bus
Interface

The Agent Bus Interface (ABI) is a low-level interface between the CPC and each
CPE, as Figure 3 on the next page shows. Its operation is quite complicated, and
subject to periodic updates to improve product performance.

For ease of programming, and to ensure future compatibility, we recommend
that you focus your programming efforts on the Standard Agent Interface (SAI)
instead, as described on the next page.

CONCEPTS TARARI CONFIDENTIAL
Introduction to the Standard Agent Interface

6

Introduction to
the Standard
Agent Interface

This section introduces the Standard Agent Interface (SAI). The SAI provides a
consistent hardware and software interface for both in-band and out-of-band
communications. Figure 3 shows how the SAI inserts into the existing hierarchy.

• From the software perspective, Device Drivers can re-use code that
communicates with the Base Driver for initializing, building, and moving data
to and from the standard data structures.

• From a hardware perspective, Agent developers receive and send data using
a simple first in, first out (FIFO) interface.

The SAI module hides the memory management functions required to
communicate with software, and to transfer data between the Agent and DDR
SDRAM. Agent developers can focus on the valuable features of their processing
accelerator, rather than low value, but necessary, interface management.

For more details on the SAI, see “Standard Agent Interface” on page 38.

Figure 3: Hardware/Software Implications of the SAI

Content Processor 1

Agent Bus
Standard

Agent
Interface

Agent
Bus

Interface

Content Processor 2

Standard
Agent

Interface

Agent
Bus

Interface

C
on

te
nt

 P
ro

ce
ss

or
 F

P
G

A
Agent Bus

(Part of)
Content Processing

Controller

P
C

I B
us

DDR SDRAM
Bus

Ag
en

t-A
ge

nt
 B

us

FIFO I/F

FIFO I/F

FIFO I/F

FIFO I/F

SB2 Base Driver

Agent Device Driver

Re-usable Procedures

Hardware
Domain

Software
Domain

7TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

Content Processing Platform
The CPP board is a hardware accelerator designed to offload and accelerate key
compute-intensive algorithms or processes performed by servers or appliances
in a network. Developers can use it to target applications for hardware
acceleration, with significant performance improvement.

Figure 4 shows the main CPP board components.

Figure 4: CPP Board Components

The CPP board contains two dynamically configured Content Processing Engines
(CPEs). You can configure these CPEs at system startup using a script, or at
runtime, without rebooting. After configuration, each CPE is separated into sub-
components called Agents.

Each CPE can run one or two Agents, depending upon the memory requirements.
You can program each Agent to perform certain functions, such as RSA, DES,
PRNG, and many other algorithms.

The CPP board also features 256 MB of DDR SDRAM. This memory shares data
between the CPEs and your applications.

Detailed component descriptions follow on the next page.

Content Processing

Content Processing

PCI Bus (32/64 bit, 33/66 Mhz, 3.3 v)

Fan Shroud
256 MB DDR SDRAM

Engine (CPE #1)
Content Processing
Engine (CPE #2)

Controller (CPC)

CONCEPTS TARARI CONFIDENTIAL
Content Processing Controller

8

Content
Processing
Controller

The CPC:

• Provides transparent access to:

• High bandwidth, high capacity shared memory (DDR SDRAM)

• High-speed standard bus

• Configures the CPP with acceleration Agent sets:

• Supports multiple concurrent independent acceleration Agents

• Supports entire acceleration Agent sets with dependent Agents

• Simplifies managing software algorithms in hardware

Content
Processing
Engines

Each CPE:

• Accelerates algorithms through runtime hardware configurations

• Provides simple and powerful interface to all CPP resources:

• Low latency local memory (SRAM)

• The CPC, shared memory, and system bus

• Simplifies implementing software algorithms in hardware

• Supports one or two Agents, as required

Software Model CPP Data Flow
The CPP data flow model consists of multiple hardware and software layers. At
the lowest layer, a Base Device Driver (BDD) communicates directly with one or
more CPP boards in the system. Applications can interface with multiple Agent
Device Drivers (ADDs), but each Agent you configure on the CPP requires at least
one corresponding ADD.

Figure 5 shows the CPP data flow from the user application, through the ADD, the
BDD, the hardware layer, and back to the application again.

9TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

Figure 5: CPP Data Flow Diagram

Application
1

Application
2

Agent 1
Device
Driver

Agent 2
Device
Driver

Agent n
Device
Driver

Agent
1

Agent
2

Agent
n

CPP Base
Device Driver

Ag
en

t
D
riv

er
La

ye
r

Ba
se

 D
riv

er
La

ye
r

H
ar

dw
ar

e
La

ye
r

Application receives result
Application

sends request
to Agent

Device Driver

Agent Driver interrupt handler called

Agent returns result using an interrupt

Agent Driver
requests hardware
access, using the

Base Driver

Job request sent
to Agent using

shared memory or
out-of-band

communication
channel

Application
n

Ap
pl

ic
at

io
n

La
ye

r

CONCEPTS TARARI CONFIDENTIAL
Software Model

10

CPP Reconfiguration Model
The BDD must always be loaded on the system, but ADDs can load or unload at
runtime as needed. Loading an ADD does not affect other installed ADDs,
although having more ADDs implies that there is more competition for CPP
resources, which could impact performance.

An ADD might load even if its corresponding Agent is not configured at the time
of the load. The BDD alerts ADDs of the insertion or removal of Agents as new
Agent sets are configured onto the CPP. The ADDs are then responsible for
registering or un-registering the affected Agents, as required.

The BDD provides an API to manage acceleration Agent set configuration. This
API consists of writing Agent sets to a cache on the CPP, and configuring a CPE
from a cached Agent set. Each CPP reserves a portion of its DDR SDRAM for
storing acceleration Agent sets. The current architecture supports up to eight
concurrent independent Agent sets. Once an Agent set is stored on the board,
the API might request that the CPP configure a CPE using the specified Agent set.

Tarari provides an Acceleration Agent Set Management software application that
exercises the acceleration Agent set management interface. In addition, Tarari
will publish the management API in the future, for third party applications to
directly manage Agents. To minimize conflicts, only one application can access
the configuration API at a time.

DDR SDRAM is allocated to ADDs in contiguous page sized segments. If a memory
segment is not available, the ADD is notified, and it has to wait until enough
memory frees up before it proceeds. After the ADD successfully allocates
memory, the ADD cannot access it directly. Instead, it must call functions declared
in the BDD that read and write to its allocated memory. This ensures the ADDs do
not read or write outside the memory segment allocated to them.

NOTE: If the Raw Access Calls are implemented in the future, the ADD will have
direct memory access. For more information, see “Raw Access Calls” on page 26.

After the BDD loads, it allocates a contiguous block of memory that it uses to store
CPE bitstreams. The loading of these bitstreams and programming of the CPEs is
initiated by the usual system calls. Each bitstream contains a header that the BDD
can read. This header information is stripped from the bitstream and saved before
writing the bitstream to memory. Your application can query the header
information to identify which bitstreams are loaded and programmed in the
CPEs.

The BDD arbitrates between the ADDs and their access to the CPP board, by
allowing the ADD with the highest priority to access the device and blocking all
others. If two or more ADDs have the same priority level, then a round robin
scheduling scheme is used on those ADDs.

11TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

Figure 6: CPP Reconfiguration Model

Agent
2

Agent
1

Agent
n

Agent Set 1
Agent Set 2
…
Agent Set n

Agent 1
Device
Driver

Agent 2
Device
Driver

Agent 3
Device
Driver

Agent Set
Management
Application

Application
1

CPP Base
Device Driver

Agent Device
Drivers can

load or unload
at runtime

You can load
Agent Device

Drivers even if
their Agents are
not configured

Base Device Driver
caches up to eight
Acceleration Agent
Sets on the CPP

Base Device Driver
must always be present

Caches Agent
Sets and

configures
CPEs

CONCEPTS TARARI CONFIDENTIAL
CPP Example

12

CPP Base Device Driver (BDD)
The BDD manages DDR SDRAM on the CPP boards, the configuration of the CPEs,
and the synchronization between the ADDs.

CPP Agent Device Drivers (ADDs)
ADDs are custom-made for every Agent, but every ADD must follow a protocol to
communicate with the BDD. Each ADD must initially register itself with the BDD
by informing it of the type or types of Agents it accesses, and the size of the
memory segment it wants to allocate. The ADD must also register an interrupt
service routine (ISR) with the BDD.

• If the registrations succeed, the ADD is assigned a handle. The ADD uses this
handle to access the memory segment allocated to it by the BDD. ADDs are
free to manage the memory allocated to them in any way.

• If the ADD is no longer needed and it is about to unload, it must un-register
itself with the BDD. This directs the BDD to free the memory segment
formerly allocated to the ADD.

CPP Example Before an application can use the Agents, an ADD for each type of Agent the
application accesses must be loaded in the system. This ADD handles all Agents
of the same type in the CPEs, and across multiple CPP boards. For example,
consider the two-board application in Figure 7:

• Agents 1 and 2 of CPE 1 on CPP Board 1 are configured for RSA.

• Agents 1 and 2 of CPE 2 on CPP Board 1 are configured for DES.

• Agent 1 of CPE 1 on CPP Board 2 is configured for RSA.

• Agent 2 of CPE 1 on CPP Board 2 is configured for XML.

• CPE 2 on CPP Board 2 is not configured (NC).

• Three ADDs must be loaded in the system: one for RSA, one for DES, and one
for XML.

• The applications access the Agents using the ADD, layered on top of the BDD.

The Agents in Figure 7 are examples only. Your application might use different
Agent and CPE assignments.

13TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

Figure 7: Agents on Two CPP Boards

BDD Responsibilities
• CPE Configuration: The BDD keeps track of every bitstream loaded into the

system and programmed into each CPE on each CPP board, and provides an
interface for applications to manage configurations.

• Interrupts: The BDD handles all interrupts from each CPP board, and routes
them to the correct ISR in a particular ADD.

• DDR Memory Management: The BDD allocates segments of memory to
ADDs, and performs bounds checking on any read or write access to the
allocated memory.

SSL
Proxy

XML
Application

DES Agent
Device Driver

RSA Agent
Device Driver

XML Agent
Device Driver

CPP Board 1

CPE 1

AGENT 1

AGENT 2

CPE 2

AGENT 1

AGENT 2

RSA

RSA DES

DES

CPP Board 2

CPE 1

AGENT 1

AGENT 2

CPE 2

AGENT 1

AGENT 2

RSA NC

NCXML

NC = Not
Configured

CONCEPTS TARARI CONFIDENTIAL
CPP Example

14

Figure 8: User Applications and Device Drivers

Kernel Space

Base
Driver

PCI Bus

ADD n

ADD 3

ADD 2

ADD 1

User
App. 1

User
App. n

User
App. 2

User
App. 7

User
App. 4

User
App. 5

User
App. 3

User Space

User
App. 6

Config.
Tool

CPP
Board 1

CPP
Board 0

CPP
Board n

CPP
Board 2

15TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

BDD to ADD Interface

Overview The Base Device Driver (BDD) provides these API calls to communicate with the
Agent Device Drivers (ADDs):

• Registration calls and callbacks direct an ADD to request access to
particular types of Agents and instantiations of those Agents.

• Data Transfer calls provide read and write access to an Agent’s I/O port and
shared device memory. The BDD provides direct memory access (DMA)
capabilities. Your application can improve DMA performance if the BDD
accesses cached address mappings to application buffers.

• Performance Optimization calls currently provide the necessary steps for
implementing DMA transfers, but might have additional options in the
future.

• Raw Access calls provide the raw virtual address of an Agent’s address space
to an ADD. Your application can use this address to implement Linux memory
map (mmap) functionality within the ADD. Although we recommend that
ADDs access Agent memory using direct memory access for performance
reasons, mmap is quite useful when developing and debugging new Agents.

Data Structures The CPP data structures and APIs are designed to be primarily architecture
independent. However, some structures are specific to Windows* or Linux
environments.

Architecture Dependent
For more information on the architecture-dependent structures in Table 2, see
the Linux and Windows CPP sections in this document.

CONCEPTS TARARI CONFIDENTIAL
Data Structures

16

Architecture Independent
Table 2 lists the architecture independent structures.

Structure Item Description
CppAgtID_t Purpose Each Agent is assigned a unique Agent identifier value during Agent

creation. The BDD uses this to match an Agent with its associated ADD.
This structure contains an Agent identifier (32-bit) value.

Syntax typedef CppAgtID_t uint32_t;

CppReturnCode_t Purpose The BDD to ADD interface uses these codes, defined by this structure, for
return values.

Syntax typedef enum CppReturnCode
{
 CPP_SUCCESS = 0,
 CPP_NO_AGENT,
 CPP_NO_RESOURCES,
 CPP_INVALID_PARAMETER,
 CPP_INVALID_AGENT_HANDLE,
 CPP_AGENT_ID_NOT_AVAILABLE
} CppReturnCode_t;

CppAddrType_t Purpose User space and kernel space use different address spaces, but the BDD
must transfer data to and from buffers that might reside either in user
space applications or kernel space drivers. As a result, data transfer calls
must indicate the address space to which a particular buffer refers.

Syntax typedef enum CppAddrType
{
 USER_SPACE_VIRTUAL_ADDR,
 KERNEL_SPACE_VIRTUAL_ADDR
} CppAddrType_t;

CppAgtDrvCbackMsg_t Purpose • The BDD uses a callback routine to notify an ADD whenever an Agent
related to that ADD is added or removed from the system. This
structure type indicates which event occurred and instigated the
callback.

• The CPP_ADD_AGENT message indicates that a new Agent is now
available for registration. The BDD alerts the ADD whose Agent
identifier matches that of the newly configured Agent.

• The CPP_RELINQUISH_AGENT message warns an ADD that the BDD
received a request to overwrite that Agent with a different Agent set.
The BDD allows the ADD time to clean up all its outstanding requests,
and waits for an acknowledgement indicating that the Agent is clear
for removal. If the ADD does not respond with an acknowledgement
within a timeout period, the BDD sends the CPP_REMOVE_AGENT
message to the offending ADD to forcibly reconfigure the CPE. If an
ADD receives the CPP_REMOVE_AGENT message, it might not access
the Agent’s resources.

Syntax typedef enum CppAgtDrvCbackMsg
{
 CPP_ADD_AGENT,
 CPP_RELINQUISH_AGENT,
 CPP_REMOVE_AGENT
} CppAgtDrvCbackMsg_t;

Table 2: Architecture Independent Data Structures

17TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

Registration
Calls and
Callbacks

Table 3 lists the registration calls and callbacks.

Function Call Item Description
CppRegisterAgentID Purpose • Each Agent is assigned a unique identifier during the “Agent Signing”

process after the Agent is created. This function call lets ADD request
access to all Agents with the specified identifier. Each Agent identifier
might only have one associated ADD. As a result, this call acts as a gate
for all other Agent interface calls. Successful calls to this function do
not necessarily mean that the ADD has registered for particular
instantiations of an Agent. This is accomplished by calling
CppRegisterAgent().

• On a successful call, the CPP_SUCCESS value is returned. If another
ADD already has exclusive access to the requested Agent identifier,
CPP_AGENT_ID_NOT_AVAILABLE is returned.

• On success, the NumConfiguredAgts field is updated with the number
of Agents of the specified identifier that already are configured. For
example, if the Diagnostic ADD requests access to the Diagnostic
Agent Identifier and two Diagnostics Agents are already configured on
a CPP device, the NumConfiguredAgts field is set to the value 2. If no
Agents of the specified type are configured (NumConfiguredAgts ==
0), the ADD cannot access an Agent until it is notified by the
AgtDrvCallback() function that an appropriate Agent has been
configured.

• The BDD calls the AgtDrvCallback() routine when any of these
CppAgtDrvCbackMsg_t messages are sent to the ADD:

• CPP_ADD_AGENT: A new Agent of the specified type is available
• CPP_RELINQUISH_AGENT: Another Agent has requested the CPE

resources currently in use by one or more registered Agents. In this
case, the ADD must shut down all connections to the Agent in
question, and acknowledge that the resources are available to the
BDD using the CppAckAgtRemoval() call.

• CPP_REMOVE_AGENT: If the ADD does not acknowledge a request
to free Agent resources, the BDD times out, and calls the offending
ADD, indicating that the Agent’s resources have been revoked. This
is not yet implemented in Linux.

Syntax CppReturnCode_t CppRegisterAgentID (
 CppAgtID_t agtID,
 uint32_t* numConfiguredAgts,
 void(*agtDrvCallback) (CppAgtDrvCbackMsg_t agtMsg,
 CppAgtID_t agtID)

Inputs • agtID: The unique Agent identifier assigned to the Agent during its
creation and signing

• numConfiguredAgts: This returns how many of the specified Agents
currently are configured

• agtDrvCallback: The BDD makes this callback when Agents are added
or removed from the system

Table 3: Registration Calls and Callbacks

CONCEPTS TARARI CONFIDENTIAL
Registration Calls and Callbacks

18

CppRegisterAgentID
(continued)

Returns • CPP_SUCCESS: The registration for the AgentID identifier succeeded.
The ADD now has the ability to register for particular instantiations of
that AgentID and communicate with those Agents.

• CPP_AGENT_ID_NOT_AVAILABLE: Another ADD has already requested
exclusive access to all Agents with the specified identifier.

• CPP_INVALID_PARAMETER: agtDrvCallback() is NULL

CppUnregisterAgentID Purpose Releases the resources acquired in CppRegisterAgentID()
Syntax CppReturnCode_t CppUnregisterAgentID (

 CppAgtID_t agtID)
Inputs • agtID: The unique Agent identifier assigned to the Agent during Agent

creation and signing
Returns • CPP_SUCCESS: The ADD has successfully relinquished access to all

Agents with an identifier matching agtID.
• CPP_NO_ACCESS: The call fails with this value if the identifier is not

registered.

CppRegisterAgent Purpose • This call requests access to one instance of an Agent whose identifier
matches agtID and whose memory requirements are agtMemSize
bytes. Upon successful completion, the call sets the CppAgtHandle_t,
pointed to by agtHandlePtr, to a valid handle. It uses this handle in
future calls to the BDD to reference the newly registered Agent.

• The call fails unless the calling ADD has already received access to all
Agents of this type using the CppRegisterAgentID() call.

Syntax CppReturnCode_t CppRegisterAgent (
CppAgtID_t agtID,
uint32_t agtMemSize,
CppAgtHandle_t* agtHandlePtr,
void (*interruptHandler) (CppAgtHandle_t agtHandle,
 uint32_t interruptData))

Inputs • agtID: The unique Agent identifier assigned to the Agent during Agent
creation and signing

• agtMemSize: The amount of device memory that the Agent requires to
function

• agtHandlePtr: The BDD assigns a handle to the ADD upon a successful
registration

• interruptHandler: The BDD calls this ISR when the associated Agent
generates an interrupt. The ISR is told which Agent generated the
interrupt using the agtHandle parameter. The interruptData parameter
holds the 32-bit interrupt data.

Returns • CPP_SUCCESS: The ADD has successfully registered the Agent
• CPP_NO_AGENT: No Agents are available for registration
• CPP_INVALID_PARAMETER: One of the parameters is outside an

acceptable range. For example: If the interrupt handler is NULL, or the
Agent’s memory size is negative, the routine returns with an invalid
parameter message.

• CPP_NO_RESOURCES: Too many ADDs are registered, and no available
slots are left or a memory allocation for the Agent fails

Function Call Item Description

Table 3: Registration Calls and Callbacks (continued)

19TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

CppUnregisterAgent Purpose Releases the Agent resources associated with the Agent reference by
agtHandle

Syntax CppReturnCode_t CppUnregisterAgent (
CppAgtHandle_t agtHandle)

Inputs agtHandle: A valid handle to an Agent owned by the calling ADD
Returns • CPP_SUCCESS: The ADD has successfully unregistered the Agent

• CPP_INVALID_AGENT_HANDLE: No Agents correspond to the handle
given

CppAckAgtRemoval Purpose • After an ADD receives access to an Agent identifier using the
CppRegisterAgentID() call, the BDD alerts the Agent if any Agents
matching that identifier are added or removed from the system. This
notification occurs through the callback routine given as a parameter
during the CppRegisterAgentID()process.

• If the ADD receives the CPP_RELINQUISH_AGENT message through its
callback routine, it must shut down all connections to the specified
CppAgtHandle_t and free any resources associated with the Agent.
After the ADD has freed such resources, it sends an acknowledgement
back to the BDD through the CppAckAgtRemoval() call indicating that
the Agent is now available for removal.

• After acknowledging the agent’s removal, the ADD must not access
any resources associated with the agent. Furthermore, if the ADD does
not send an acknowledgement back to the Base Driver within a TBD
timeout period, the Base Driver will send a CPP_REMOVE_AGENT
command to the offending ADD and forcefully remove the agent.

Syntax CppReturnCode_t CppAckAgtRemoval (
CppAgtHandle_t agtHandle)

Inputs agtHandle: A valid handle to an agent owned by the calling ADD
Returns • CPP_SUCCESS: ADD successfully acknowledged the agent removal

• CPP_INVALID_AGENT_HANDLE: No agents correspond to the given
handle

Function Call Item Description

Table 3: Registration Calls and Callbacks (continued)

CONCEPTS TARARI CONFIDENTIAL
Data Transfer Calls

20

Data Transfer
Calls

Table 4 lists the Data Transfer Calls.

Function Call Item Description
CppWriteRegister Purpose Each agent has a dedicated 32-bit I/O port register it uses for

communication of out-of-band information with its associated ADD.
Typically, commands are written to the register, and the status is read
back from the register. The format for such commands and status are
largely agent-specific. The only restriction is that the most significant bit
of the command register is reserved for agent initialization by the BDD,
and no agent-specific command can ever set bit 31 of the register.

Syntax CppReturnCode_t CppWriteRegister (
CppAgtHandle_t agtHandle,
uint32_t command)

Inputs • agtHandle: A valid handle to an agent owned by the calling ADD
• command: 32-bit command sent to the agent referenced by

agtHandle
Returns • CPP_SUCCESS: The ADD successfully wrote the command to the

agent’s 32-bit I/O port
• CPP_INVALID_AGENT_HANDLE: No agents correspond to the handle

given

CppReadRegister Purpose Each agent has a dedicated 32-bit I/O port register used for
communication of out-of-band information with its associated ADD.
Typically, commands are written to the register, and the status is read
back from the register.

Syntax CppReturnCode_t CppReadRegister (
CppAgtHandle_t agtHandle,
uint32_t* status)

Inputs • agtHandle: A valid handle to an agent owned by the calling ADD
• command: 32-bit command sent to the agent referenced by

agtHandle
Returns • CPP_SUCCESS: The ADD successfully read the command from the

Agent’s 32-bit I/O port
• CPP_INVALID_AGENT_HANDLE: No agents correspond to the handle

given

Table 4: Data Transfer Calls

21TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

CppDirectWriteMem Purpose • ADDs can write directly to an agent’s device memory. For
performance reasons, the preferred method of data transfer is to
DMA data directly to the board. However, for small data transfers it
might be more efficient to directly access board memory rather than
paying the overhead of setting up a DMA transaction.

• The CppDirectWriteMem() call writes length bytes to the specified
agent’s memory buffer, starting at an offset of agtMemOffset bytes
from the agent’s first memory location. The source of the data is
sourceBuffer.

• The addrType indicates what type of address sourceBuffer is. It can
take any of the CppAddrType_t values, which address the possible
virtual and physical memory segments.

Syntax CppReturnCode_t CppDirectWriteMem (
CppAgtHandle_t agtHandle,
CppAddrType_t addrType,
uint8_t* sourceBuffer,
uint32_t agtMemOffset,
uint32_t length)

Inputs • agtHandle: A valid handle to an agent owned by the calling ADD
• addrType: Type of address found in sourceBuffer. The source data

might reside either in a user-space virtual buffer or a kernel buffer.
• sourceBuffer: Pointer to the start of the source data to be sent to the

device
• agtMemOffset: Device destination location given as a byte offset into

an agent’s shared memory segment
• length: Number of bytes to transfer to the agent’s shared memory

segment
Returns • CPP_SUCCESS: The ADD successfully wrote the data to the device

• CPP_INVALID_AGENT_HANDLE: No agents correspond to the given
handle

• CPP_INVALID_PARAMETER: One of the parameters was
unrecognized, or would potentially cause overflow or underflow
during the data transfer

Function Call Item Description

Table 4: Data Transfer Calls (continued)

CONCEPTS TARARI CONFIDENTIAL
Data Transfer Calls

22

CppDirectReadMem Purpose • ADDs can read directly from an agent’s device memory. For
performance reasons, the preferred method of data transfer is to
DMA data directly from the board. However, for small data transfers it
might be more efficient to directly access board memory rather than
paying the overhead of setting up a DMA transaction.

• The CppDirectReadMem() call reads length bytes from the specified
agent’s memory buffer starting at an offset of agtMemOffset bytes
from the agent’s first memory location. The destination of the data is
destBuffer.

• The addrType parameter indicates what type of address destBuffer is.
It can take any of the CppAddrType_t values which cover the possible
virtual and physical memory segments.

Syntax CppReturnCode_t CppDirectReadMem (
CppAgtHandle_t agtHandle,
CppAddrType_t addrType,
uint8_t* destBuffer,
uint32_t agtMemOffset,
uint32_t length)

Inputs • agtHandle: A valid handle to an agent owned by the calling ADD
• addrType: Type of address found in destBuffer. The destination can

be located in a user-space buffer or a kernel buffer.
• destBuffer: The call transfers data from the device to the buffer

referenced by destBuffer.
• agtMemOffset: Source location of the data to be transferred. The

location is given as a byte offset into an agent’s shared memory
segment.

• length: Number of bytes to transfer from the agent’s shared memory
segment

Returns • CPP_SUCCESS: The ADD successfully read the data from the device
• CPP_INVALID_AGENT_HANDLE: No agents correspond to the handle

given
• CPP_INVALID_PARAMETER: One of the parameters was unrecognized

or would potentially cause overflow or underflow during the data
transfer

Function Call Item Description

Table 4: Data Transfer Calls (continued)

23TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

CppDirectSetMem Purpose • ADDs can fill a range of its memory with a known value. This
capability is similar to the standard memset() function.

• The CppDirectSetMem() call sets length bytes to fill_value, starting at
an offset of agtMemOffset in the agent’s memory space.

Syntax CppReturnCode_t CppDirectSetMem (
CppAgtHandle_t agtHandle,
uint8_t fillValue,
uint32_t agtMemOffset,
uint32_t length)

Inputs • agtHandle: A valid handle to an agent owned by the calling ADD
• fillValue: The unsigned character that is sent to the device memory
• agtMemOffset: Destination location of the data to be transferred. The

location is given as a byte offset into an agent’s shared memory
segment.

• length: Number of bytes of the agent’s memory to set to fillValue
Returns • CPP_SUCCESS: The ADD successfully set the memory to fillValue

• CPP_INVALID_AGENT_HANDLE: No agents correspond to the handle
given

• CPP_INVALID_PARAMETER: One of the parameters was unrecognized
or would potentially cause overflow or underflow during the data
transfer

Function Call Item Description

Table 4: Data Transfer Calls (continued)

CONCEPTS TARARI CONFIDENTIAL
Data Transfer Calls

24

CppDmaWriteMem Purpose • The CppDmaWriteMem() call writes length bytes to the specified
agent’s memory buffer starting at an offset of agtMemOffset bytes
from the agent’s first memory location. The source of the data is
destBuffer and can reside in either a user-space or kernel-space
address location.

• The addrType parameter indicates what type of address sourceBuffer
is. It can take any of the CppAddrType_t values which cover the
possible virtual and physical memory segments.

• The CppDmaWriteMem()call will return after inserting the necessary
DMA requests into the BDD. The DMA request will complete at an
unknown time in the future. Upon completion of the DMA transfer,
the BDD will call the agtDrvDmaCallback() routine with the
callbackData parameter and the result of the DMA transfer in the
status parameter.

Syntax CppReturnCode_t CppDmaWriteMem (
CppAgtHandle_t agtHandle,
CppAddrType_t addrType,
uint8_t* sourceBuffer,
uint32_t agtMemOffset,
uint32_t length,
void* callbackData,
void (*agtDrvDmaCallback)(void *callbackData,
 CppReturnCode_t status))

Inputs • agtHandle: A valid handle to an agent owned by the calling ADD
• addrType: Type of address found in sourceBuffer. The source data can

be located in a user-space buffer or a kernel buffer.
• sourceBuffer: The call will transfer data to the device from the buffer

referenced by sourceBuffer.
• agtMemOffset: Destination location of the data to be transferred. The

location is given as a byte offset into an agent’s shared memory
segment.

• length: Number of bytes to transfer to the agent’s shared memory
segment

• callbackData: The agtDrvDmaCallback()will be called with this
parameter upon completion of a DMA transfer

• agtDrvDmaCallback: This function will be called upon completion of
a DMA transfer

Returns • CPP_SUCCESS: The ADD successfully sent a DMA request to the BDD.
This does not necessarily mean that the DMA completed. The status
of the actual transfer is given as part of the callback routine to the
ADD.

• CPP_INVALID_AGENT_HANDLE: No agents correspond to the given
handle

• CPP_INVALID_PARAMETER: One of the parameters was
unrecognized, or would potentially cause overflow or underflow
during the data transfer

Function Call Item Description

Table 4: Data Transfer Calls (continued)

25TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

CppDmaReadMem Purpose • The CppDmaReadMem() call reads length bytes from the specified
agent’s memory buffer starting at an offset of agtMemOffset bytes
from the agent’s first memory location. The destination of the data is
destBuffer and can reside in either a user-space or kernel-space
address location.

• The addrType parameter indicates what type of address destBuffer is.
It can take any of the CppAddrType_t values which cover the possible
virtual and physical memory segments.

• The CppDmaReadMem() call returns after inserting the necessary
DMA requests into the BDD. The DMA request will complete at an
unknown time in the future. Upon completion of the DMA transfer,
the BDD will call the agtDrvDmaCallback() routine with the
callbackData parameter and the result of the DMA transfer in the
status parameter.

Syntax CppReturnCode_t CppDmaReadMem (
CppAgtHandle_t agtHandle,
CppAddrType_t addrType,
uint8_t* destBuffer,
uint32_t agtMemOffset,
uint32_t length,
void* callbackData,
void (*agtDrvDmaCallback)(void *callbackData,
 CppReturnCode_t status))

Inputs • agtHandle: A valid handle to an agent owned by the calling ADD
• addrType: Type of address found in destBuffer. The destination can

be located in a user-space buffer or a kernel buffer.
• destBuffer: The call transfers data to the device from the buffer

referenced by destBuffer.
• agtMemOffset: Source location of the data to be transferred. The

location is given as a byte offset into an agent’s shared memory
segment.

• length: Number of bytes to transfer from the agent’s shared memory
segment

• callbackData: The agtDrvDmaCallback() is called with this parameter
upon completion of a DMA transfer

• agtDrvDmaCallback: This function is called upon completion of a
DMA transfer

Returns • CPP_SUCCESS: The ADD successfully sent a DMA request to the BDD.
This does not necessarily mean that the DMA completed. The status
of the actual transfer is given as part of the callback routine to the
ADD.

• CPP_INVALID_AGENT_HANDLE: No agents correspond to the handle
given

• CPP_INVALID_PARAMETER: One of the parameters was unrecognized
or would potentially cause overflow or underflow during the data
transfer

Function Call Item Description

Table 4: Data Transfer Calls (continued)

CONCEPTS TARARI CONFIDENTIAL
Performance Optimization Calls

26

Performance
Optimization
Calls

These calls are not yet implemented, and are only preliminary.

CppReturnCode_t CppMappedDmaWriteMem(
 CppAgtHandle_t AgtHandle,
 CppDmaMapping_t *PageMapping,
 uint32_t PageMapOffset,
 uint32_t AgtMemOffset,
 uint32_t Length,
 void *CallbackData,
 void (*AgtDrvDmaCallback)(void *CallbackData,
 CppReturnCode_t status));

CppReturnCode_t CppMappedDmaReadMem(
 CppAgtHandle_t AgtHandle,
 CppDmaMapping_t *PageMapping,
 uint32_t PageMapOffset,
 uint32_t AgtMemOffset,
 uint32_t Length,
 void *CallbackData,
 void (*AgtDrvDmaCallback)(void *CallbackData,
 CppReturnCode_t status));

CppReturnCode_t CppCreateVirtBufferMap(
 uint8_t *VirtBuffer;
 CppDmaMapping_t *PageMapping);

CppReturnCode_t CppReleaseVirtBufferMap(
 CppDmaMapping_t *PageMapping);

Raw Access
Calls

These calls are not yet implemented, and are only preliminary.

CppReturnCode_t CppGetAgtVirtAddr(
 CppAgthandle_t AgtHandle,
 unsigned long *AgtVirtAddr);

27TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

Standard Memory Use

Basic Circular
Queue
Definition

For the purposes of this document, circular queues are contiguous sections of
memory in which the top of the Queue (Q_Top) is the lowest memory address,
and the bottom of the queue (Q_Bottom) is the highest memory address.
Together, head and tail pointers define the free and in-use portion of the queue:

• The Head pointer points to the next free memory location.

• The Tail pointer points to the first in-use memory location.

Empty: Q_Tail == Q_Head

Full: (Q_Head + 1 Mod Queue Size) == Q_Tail

Queues are initialized so that the Q_Head = Q_Tail = Q_Top (an empty condition).
All pointers point to qword addresses, as Figure 9 shows.

Figure 9: Basic Circular Queue Structure

Queue Types All hardware and software in-band communications use queues in DDR SDRAM.
Three queue types are employed for this purpose:

• Software initiates hardware actions using an Input Command Queue.

• Hardware supplies completion status using an Output Status Queue.

• Software/Hardware data communications use a Data Queue.

While in-band communications occur using these three queue types, queue
management takes place using out-of-band communications methods:

• Software updates the head pointer of the Input Command Queue and the
tail pointer of the Output Status Queue

• Hardware updates the tail pointer of the Input Command Queue and the
head pointer of the Output Status Queue.

• Software controls both the head and tail pointer of the Data Queue.

For more information about out-of-band communications, see “Standard Out-of-
Band Communications” on page 33.

Free

Q_Top

Q_Bottom

Q_Head

Q_Tail

In Use

In Use

CONCEPTS TARARI CONFIDENTIAL
Data Queue

28

Data Queue Input and output data is stored in the Data Queue. Software manages this queue
and dictates input/output data locations to Agents using the aforementioned
Input Command Queue. Agents view the Data Queue as a circular queue,
bounded by the Top and Bottom pointers that software sets during initialization.
If an Agent reaches the bottom of the queue during a read or write operation, it
continues the operation at the top of the queue.

Input Header
Format

Figure 10 shows the basic format of Input Headers loaded into the Input
Command Queue. Input headers have a fixed size of 64 bytes, and only use the
first 5 words for software/Agent communications.

Figure 10: Input Header Basic Format

Command

Input File Pointer/Immediate Data

Output File Allocation (words)

Output File Pointer

Input File Length (bytes)

031

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Reserved I
G

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

29TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

• The Command field has two formats, the Common Command format and
the Agent Specific Command format, as described below. Depending on the
associated command, the Input File Pointer/Immediate Data field might
contain a qword pointer to DDR SDRAM, or 32-bits of data. For commands
requiring an Input File Pointer, the Input File Length field contains the length
(in bytes) of the associated input file. The Output File Pointer field is a qword
pointer to the DDR SDRAM, indicating the 8-byte aligned starting memory
location for the Agent’s output data. The Output File Allocation Field
indicates the maximum amount of memory (in dwords) that the Agent uses
for its output data. The Agent must not write beyond its allocated memory
space.

• The Interrupt Generate (IG) field indicates if the Agent is to interrupt
software upon the completion of this command.

Common Commands
Common commands are used for all Agents. These commands write to, and read
from internal Agent registers, and initialize local Agent memory. All pointers to
DDR SDRAM are qword pointers, and all pointers to Agent SRAM are dword
pointers. These four commands are currently defined for this Header Format, and
the SAI executes them only after all previous jobs complete:

• Write Register (immediate): Copy the contents of the 32-bit Immediate Data
field to the register pointed to by the Destination_Address field.

• Read Multiple: Copy the contents of the dword aligned memory location
pointed to by Source_Start_Address to DDR SDRAM starting at the offset
pointed to by the Output File Pointer field; increment the source and
destination addresses by 4-bytes; repeat “Output File Allocation” times.

• Write Multiple: Copy the contents of the qword aligned DDR SDRAM
location starting at the offset pointed to by the Input File Pointer field to the
internal memory locations pointed to by the Destination_Start_Address field.
Repeat “Input File Length / 4” times.

• Initialize: Similar to the Write Multiple Command, except the last 4-bytes of
the input file contain a 4-byte checksum. Upon completion of the write
portion of the command, the Agent reads back each destination memory
location while calculating the 32-bit checksum. The Agent then compares the
checksum and reports errors using the Output Header.

CONCEPTS TARARI CONFIDENTIAL
Input Header Format

30

Figure 11 through Figure 14 show the specific formats for each of the common
commands.

Figure 11: Write Register Command Format

Figure 12: Read Multiple Command Format

Figure 13: Write Multiple Command Format

Command

Immediate Data

Unused

Unused

Unused

031

0

1

2

3

4 Reserved I
G

Destination_Address(25:2)0 0 0 0 0 0 0 1

26

Command

Unused

Output File Allocation (words)

Output File Pointer

Unused

031

0

1

2

3

4 Reserved I
G

Source_Start_Address(25:2)0 0 0 0 0 0 1 0

26

Command

Input File Pointer

Unused

Unused

Input File Length (bytes)

031

0

1

2

3

4 Reserved I
G

Destination_Start_Address(25:2)0 0 0 0 0 0 1 1

26

31TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

Figure 14: Initialize Command Format

Agent Specific Commands
As Figure 15 shows, the Agent Specific command format is similar to the
Common commands. When bit 31 of the first word is set, the Input Header
contains an Agent Specific command. Bits 30:16 are unique to the Agent and are
defined in the corresponding functional specification. The Job ID field contains
an arbitrary 16-bit value unique to the submitted job for the life of that job. Job
ID 0x0000 is reserved for Common commands. They have an implied Job ID of
0x0000, and must not be used for Agent Specific commands. All pointers are
qword pointers.

Figure 15: Agent Specific Command Format

Command

Input File Pointer

Unused

Unused

Input File Length (bytes)

031

0

1

2

3

4 Reserved I
G

Destination_Start_Address(25:2)0 0 0 0 0 1 1 1

26

Command, Parameters
(Agent Specific)

Input File Pointer

Output File Allocation (words)

Output File Pointer

Input File Length (bytes)

031

Job ID

15

1

Reserved I
G

0

1

2

3

4

CONCEPTS TARARI CONFIDENTIAL
Output Header Format

32

Output Header
Format

After completing the command retrieved from the Input Command Queue, the
Agent writes the resulting status to the Output Status Queue. The output status
is contained in 8-byte headers, as Figure 16 shows.

Figure 16: Output Header General Format

Bit 31 of the first word of the Output Header is the Error bit. If the Agent had an
abnormal termination of the requested command, it sets bit 31 to 1. If the Agent
tries to output more data than there is space allocated by the command
descriptor, the SAI sets bits 31:30 to 11. The Status field is 14 bits wide and
contains Agent specific status. The lower 16 bits of the first word contain the Job
ID, as copied from the Input Header. All Common Commands have an implied Job
ID of 0x0000, so all resultant Output Headers contain 0x0000 in the Job ID field.
The second dword of the Output Header contains the 28-bit Output File Length,
which is the actual number of valid bytes the Agent wrote to DDR SDRAM.

Software uses the Job ID as a reference, to determine the location of the output
file in DDR SDRAM. The Output File Length defines the number of bytes to copy
to host memory. The SAI guarantees that all Common Commands execute and
complete in the order received. Thus, software can determine the location of
output files in DDR SDRAM when the Job ID is 0x0000.

Job IDE Status

Output File Length (bytes)

031

0

1 Reserved

S
E

33TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

Standard Out-of-Band Communications

Out-of-band
Communication
Channels

Queue management functions, including pointer initialization and pointer
updates, occur using out-of-band communications. CPP hardware provides a 32-
bit write-only register for software to Agent out-of-band communications and a
similar read-only register for Agent to software communications. A second Agent
to software register generates a hardware interrupt when updated by the Agent.

The CPP hardware and software Base Driver do not define the format of the two
Agent-to-software communication channels. The CPP Base Driver defines a single
format for the software-to-Agent channel. As Figure 17 shows, when bit 31 is set,
the command is defined as the load DDR SDRAM Base Address. When an Agent
receives this command, it sets its internal DDR SDRAM Base Address register to
the value contained in bits 30:0. When bit 31=0, the format of the command is
user-defined (using the Agent Device Driver). This is a qword address.

Figure 17: Load DDR SDRAM Base Address Command

Out-of-Band
Communication
Standard
Formats

This section specifies a standard use model for the available out-of-band
communications channels, required for the SAI’s proper operation.

Basic Format
Figure 18 shows the basic format for Agent/software out-of-band
communications. Bit 31 is always 0. Bits 30 through 27 contain the Op Code or
command. Except for the Set_DataQ_Top and Set_DataQ_Bottom commands
Bits 26 through 24 are reserved. The lower 24 bits contain the pointer or data
value associated with the op-code.

All out-of-band communications between software and hardware follow this
basic format. Software issues commands to hardware using the software-to-
Agent channel. In most cases (exceptions are noted in the next section), hardware
echoes software commands through its Agent-to-software channel. Hardware
issues pointer updates using the interrupting Agent-to-software channel.

Figure 18: Out-of-Band Communications, Basic Format

DDR SDRAM Base Address

31

1

0

Pointer/Data Value0 Op Code Re-
served

31 27 24 0

CONCEPTS TARARI CONFIDENTIAL
Out-of-Band Communication Standard Formats

34

Out-of-Band Command Set
Table 5 summarizes the command set. For all commands except Set_DataQ_Top
and Set_DataQ_Bottom, pointer sizes are 24 bits. This 8-byte pointer represents
227, or 128 MB of addressing. This constrains the location of all Input Command
Queues and Output Status Queues to the lower 128 MB of allocated space (the
physical address equals the Base Address plus the pointer). Because these queues
are generally very small compared to the data queue, this constraint has little or
no impact upon the design of the Agent Device Driver.

When the Op Code is Set_DataQ_Top or Set_DataQ_Bottom, the reserved field is
used for an additional three bits of addressing. Placing the constraint that the
Data Queue must start and end on a 64-byte boundary (the lower five bits are
always 00000), which allows the Data Queue to be positioned anywhere in the full
64 GB address space.

Set Input/Output Queue Top/Bottom (Op Codes 0000 – 0001)

Software issues these commands during power initialization, or after a soft
reset. A top and bottom pointer pair defines the boundaries of the
corresponding circular queue. Although the pointers represent an 8-byte
memory address, the Input queue places additional constraints on their
alignment. Input queue pointers are 64-byte aligned and the lower 3 bits of
the pointer are always 000, as Figure 19 shows. Output queue pointers are 8-
byte aligned. For this command, bit 23 is also reserved.

Op Code Pointer Description

0000 Set_Agent_InputQ_Top Set Agent Input Command Queue Top Pointer

0001 Set_Agent_InputQ_Bottom Set Agent Input Command Queue Bottom Pointer

0010 Set_Agent_OutputQ_Top Set Agent Output Status Queue Top Pointer

0011 Set_Agent_OutputQ_Bottom SetAgent Output Status Queue Bottom Pointer

0100 Update_Agent_InputQ_Head Update Agent Input Command Queue Head Pointer

0101 Update_Agent_InputQ_Tail Update Agent Input Command Queue Tail Pointer

0110 Update_Agent_OutputQ_Head Update Agent Output Status Queue Head Pointer

0111 Update_Agent_OutputQ_Tail Update Agent Output Status Queue Tail Pointer

1000 Set_DataQ_Top Set Data Queue Top Pointer

1001 Set_DataQ_Bottom Set Data Queue Bottom Pointer

1010 TMU_Ping TMU Ping (TMU Only)

1011 TMU_Reset TMU Soft Reset (TMU Only)

1100 Agent_Read_Register Read Internal Memory Mapped Register

1101 SAI_Config Set SAI Dynamic Configuration

1110 Agent_Config Set Agent Dynamic Configuration

1111 TMU_Config Set TMU Dynamic Configuration

Table 5: Out-of-Band Command Summary

35TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

When an Agent receives this command, it echoes it back unchanged through
its Agent-to-software channel.

Figure 19: Set_Input Queue Top/Bottom Command Format

Set Output Queue Top/Bottom (Op Codes 0010 – 0011)

Figure 20: Set_Output Queue Top/Bottom Command Format

Update Input Queue Head (Op Code 0100)

Software issues this command to indicate the presence of additional headers
in the Input Command Queue. If the Agent is idle, this command causes it to
begin processing the job or jobs that software has placed in the Input
Command Queue. If the Agent is currently active, it continues processing until
the Input Command Queue is empty, or if it terminates abnormally.

Update Input Queue Tail (Op Code 0101)

Normally, software and hardware do not issue this command. After
completing a job, the Agent issues an interrupt with the
Update_OutputQ_Head command (described below). This also implies an
Update_InputQ_Tail command, because every input header has a
corresponding output header. If software issues this command, the SAI
updates its internal pointer accordingly, but with undefined results.

Update Output Queue Head (Op Code 0110)

When issued by hardware, this command indicates the presence of additional
header(s) in the Output Status Queue. The Agent uses this command to
interrupt software upon completion of a job when all interrupt conditions
have been met. For more information about interrupt conditions, see
“Standard Agent Interface” on page 38.

As each input header has a corresponding output header, this command
serves as an implicit Update_InputQ_Tail command. When the Agent updates
its internal Output Queue Head pointer, it also updates the corresponding
Input Queue Tail Pointer. If the jobs complete out of order, the implied
Update_InputQ_Tail command stalls, pending completion of all previously
submitted jobs. Software must account for this when moving its copy of the
Input Queue Tail Pointer.

If software issues this command, the SAI updates its internal pointer
accordingly, but with undefined results.

Input Queue Pointer0 Reserved

31 27 23 0
0 0 0 X 0 0 0

Output Queue Pointer0 Reserved

31 27 23 0
0 0 1 X

CONCEPTS TARARI CONFIDENTIAL
Out-of-Band Communication Standard Formats

36

Update Output Queue Tail (Op Code 0111)

Software issues this command after it has read the contents of the Output
Status Queue, usually following an interrupt. This frees the queue for
additional output headers.

Set Data Queue Top/Bottom (Op Codes 1000, 1001)

Software issues these commands during initialization or after a soft reset. The
top and bottom pair establishes the boundaries of the Data Queue. Figure 21
shows the unique format for these commands.

Figure 21: Set_DataQ_Top/Bottom Command Format

Agent Read Register (Op Code 1100)

Software issues this command to discover an Agent’s Unique ID, or to read
any of its supported internal registers. Rather than echo this command, the
Agent responds with the contents of the register pointed to by the Internal
Register Address Field, as Figure 22 shows. Bit 23 of the address is reserved for
SAI registers. With bit 23 set, the Agent never sees the read register command.
The memory map of an Agent is defined in the Agent’s functional
specification. For consistency, this specification defines the format of the first
three memory locations in Table 6. All Agents must follow this format for TMU
compatibility.

Figure 22: Agent Read Register Command Format

1 0 0 X Data Queue Top/Bottom Pointer (31:5)0

31 27 0

Agent Specific Internal Memory Address0 Re-
served

31 27 24 0
1 1 0 0 S

A

Address Contents

0x000000 Agent ID: The same ID as placed on the Bit Stream Header. Format is TBD.

0x000001 Major.Minor Revision in BCD format: MMMMmmmm. The TMU defines
bits 31:28.

0x000002 Revision date in BCD format: DDMMYYYY

Table 6: Agent Identification Registers, Standard Format

37TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

SAI Configuration (Op code 1101)

Software issues this command to setup the SAI’s timeout and interrupt
threshold counters, and enable the SAI. When the Enable bit is 0, reading or
writing to DDR SDRAM by the Agent is disabled. With the Enable bit set to 1,
the Agent retrieves and stores headers and data. The Agent Enable has no
direct effect on the Agent proper, it simply prevents the retrieval and storage
of data from and to DDR SDRAM. SAI Configuration bit 22 is the TMU present
bit. When set, the corresponding Agent must use its TMU port for issuing out-
of-band I/O writes and interrupts.

The InputQ_Empty timeout field defines the amount of time, after all jobs
have completed and the input queue is empty, that the SAI generates an
interrupt. This timer decrements at 0.5 MHz intervals.

The interrupt threshold field defines the number of output headers written to
the Output Status queue before the Agent issues an interrupting
Update_OutputQ_Head command. This provides from 1 to 32 job
completions per interrupt. Regardless of the field’s contents, the Agent
always interrupts if the Input Command queue is empty, or a job abnormally
terminates.

Figure 23: SAI Configuration Format

Acceleration Agent Configuration (Op code 1110)

Each Agent defines the Agent specific mode/configuration field, as Figure 24
shows, in its corresponding functional specification.

Figure 24: Agent Configuration Command Format

InputQ Empty Timeout0 Reserved

31 27 23 0
1 1 1 0 Interrupt

Threshold
E
n

6
T
M
U

21
10

Agent Specific Mode/Configuration0 Re-
served

31 27 24 0
1 1 0 11 0

CONCEPTS TARARI CONFIDENTIAL
Standard Agent Interface

38

Standard Agent Interface
This section describes the function and interfaces of the SAI. The SAI is a VHDL
module that interfaces the low-level Agent Bus Interface and the Agent proper. It
provides a simple FIFO interface to the Agent, allowing Agent developers to focus
on value added function rather than memory management. The abstraction layer
it provides also allows for future enhancements to the memory management
scheme without any changes or side effects on the Agent. The SAI follows the
memory management and out of band communications protocols established
earlier in this document.

General
Description

The SAI performs the queue management and software interface functions
necessary to move data between DDR SDRAM and the Agent’s input and output
FIFO. It maintains input and output header queues, located in DDR SDRAM, with
a corresponding set of Head and Tail pointers, as described in the CPDK Overview
(see “CPDK Overview” on page 3).

When new input headers become available, the SAI reads and interprets the next
header. The input header contains a pointer to and the file size of the input file.
The SAI then copies the input file from DDR SDRAM into the input FIFO of the
Agent. As the Agent performs its assigned operation on the input file, it begins to
generate data stored in its output FIFO. The input header also contains a pointer
to the corresponding output file, which the SAI uses to copy data from the
Agent’s output FIFO to DDR SDRAM. After generating and writing the output
header to the Output Header Queue, the SAI might interrupt software to indicate
the completion of the operation.

This is a step-by-step sequence of events in a typical CPDK job, from a hardware
perspective, when using the SAI. The SAI performs steps 6 through 10.

1. Software builds a DMAC descriptor list containing the input data file and the
input header.

2. Software initiates a DMAC operation.

3. The DMAC copies the input file from Host Memory to DDR SDRAM.

4. The DMAC copies the input header from Host Memory to DDR SDRAM.

5. The DMAC generates an I/O write to the SAI with an Update_InputQ_Head
command.

6. The SAI retrieves the Input Header from DDR SDRAM.

7. The SAI retrieves file data from DDR SDRAM in Agent specified block sizes
and copies it to the Agent’s input FIFO. When the last word of data is written,
as defined by the LOF field of the Input Header, the SAI asserts EOF.

8. If data is available in the Agent’s Output FIFO, the SAI copies it to DDR SDRAM
in blocks equal to the number of words in the output FIFO, but not to exceed
the Agent specified BS_MAX_WR_SZ. The SAI uses the Output File Pointer
contained in the Input Header to direct the writes to DDR SDRAM.

9. The SAI continues to write to DDR SDRAM as data becomes available until the
Agent asserts EOF, or until the maximum file size, as specified in the Input
Header, is reached.

39TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

10. If enabled and the Interrupt Threshold is reached, the SAI generates an
interrupt to the host using the Update_OutputQ_Head command.

11. Software reads the Output Header from DDR SDRAM (using direct I/O or the
DMAC).

12. Software builds a DMAC descriptor list to copy the output file to Host
Memory.

13. Software initiates a DMAC operation.

14. The DMAC copies the output file from DDR SDRAM to Host Memory.

Once the system is fully operational, the above sequences overlap to produce a
high-throughput pipelined operation. Software does not wait for one operation
to complete before submitting another. Similarly, the SAI interleaves DDR SDRAM
reads and writes, and retrieves new jobs before existing ones expire.

Interrupts
The SAI asserts an interrupt to notify the host that there are output headers for
the host to process, or if the SAI has processed all available commands. These
conditions can cause the SAI to interrupt the host, and each interrupt returns the
current output queue head pointer, as Figure 25 shows:

Figure 25: SAI Interrupt

1. Interrupt count equals interrupt threshold

2. Bit 31 set in status returned by the Agent

3. Output file allocation reached

4. Input queue tail == input queue head, command queue empty, input queue
empty timer has expired and the interrupt threshold is not hot

5. Output queue head + 1 mod queue size == output queue tail

Output Queue Head Pointer0 Reserved

31 27 23 0
0 0 1 1

CONCEPTS TARARI CONFIDENTIAL
Linux CPP Architecture

40

Linux CPP Architecture

Data Structures Table 7 lists the Data Structures.

API Calls The Linux architecture conforms to the BDD to ADD API (see “BDD to ADD
Interface” on page 15), with these expectations:

• The CppRegisterAgent() routine currently does not verify that the calling
driver has access to the given Agent Identifier before granting access to the
agent. As a result, it is possible for multiple ADDs to each own instances of
agents with the same agent identifier (although only one driver will have
access to a particular agent at a time). This behavior will most likely be
changed at some point in the future. As a result, developers must not rely on
this behavior.

• The timeout for REMOVE_AGENT is not yet implemented.

Windows* CPP Architecture
This functionality is currently under development, and will be documented here
once it becomes available.

Structure Item Description
CppAgtHandle_t Purpose • An ADD might request access to an agent configured on a CPP. The

CppAgtHandle_t structure is given to an ADD to reference a particular
agent. The ADD uses that handle on all future accesses to notify the BDD of
which agent it needs to access.

• Under Linux, the handle is defined as an integer. The BDD assigns the
handles and guarantees that concurrent handles are unique integers.

Syntax typedef CppAgtHandle_t int;

CppDmaMapping_t Purpose • This structure is not yet implemented, and is only preliminary.
• Mapping user-space buffers into an OS kernel for DMA transfers is

expensive. As a result, the CPP supports caching buffer mappings to
reduce the number of times that mappings must occur. The
CppDmaMapping_t structure holds the information required by the BDD
to perform a DMA transaction on a user-space buffer.

Syntax typedef struct CppDmaMapping
{
 struct kiobuf *iobuf;
 uint32_t mapping_length;
} CppDmaMapping_t;

Table 7: Linux CPP Data Structures

TARARI CONFIDENTIAL

Index

A
ABI

Agent Bus Interface 2
description of 5

ADD
Agent Device Driver 2

Agent Interface Compatibility 5
Agent Specific Commands 31
Agent, description of 2
Agent_Config (Op Code) 34
Agent_Read_Register (Op Code) 34
API

Application Program Interface 2
Calls 40

Architecture Independent 16
Data Structures

CppAddrType_t 16
CppAgtDrvCbackMsg_t 16
CppAgtID_t 16
CppReturnCode_t 16

B
Basic Circular Queue Definition 27
Basic Format 33
BDD

Base Device Driver 2
Responsibilities 13
to ADD Interface 15

Bitstream 2

C
CCL (Configuration and Control Logic) 2
Common commands

Initialize 29
Read Multiple 29
Write Multiple 29
Write Register 29

CPC
Content Processing Controller 2, 8

CPDK Overview 3
CPE

Content Processing Engine 2, 8
CPP

Agent Device Driver (ADD) 12
Base Device Driver 12
Content Processing Platform 2, 7
Data Flow 8
Example 12
Reconfiguration Model 10

INDEX TARARI CONFIDENTIAL
D

42

D
Data Queue 28
Data Structures 15
Data Transfer Calls

CppDirectReadMem 22
CppDirectSetMem 23
CppDirectWriteMem 21
CppDmaReadMem 25
CppDmaWriteMem 24
CppReadRegister 20
CppWriteRegister 20

DDR SDRAM 2
DMAC 2
Dword, description of 2

E
EOF, description of 2

F
FIFO, description of 2

G
General Description 38

H
Hardware developers, role of 3
Head pointer 27

I
Initialize (Common command) 29
Input Header Format 28
Interrupts 39
IOCTL, description of 2
ISR (Interrupt Service Routine) 2

K
KLM (Kernel Loadable Module) 2

L
Linux

CPP Architecture 40
Data Structures

CppAgtHandle_t 40
CppDmaMapping_t 40

LOF, description of 2

O
Op Codes

Agent_Config 34
Agent_Read_Register 34
SAI_Config 34
Set_Agent_InputQ_Bottom 34
Set_Agent_InputQ_Top 34
Set_Agent_OutputQ_Bottom 34
Set_Agent_OutputQ_Top 34
Set_DataQ_Bottom 34
Set_DataQ_Top 34
TMU_Config 34
TMU_Ping 34
TMU_Reset 34
Update_Agent_InputQ_Head 34
Update_Agent_InputQ_Tail 34
Update_Agent_OutputQ_Head 34
Update_Agent_OutputQ_Tail 34

OS (Operating System) 2
Out-of-Band

Command Set 34
Communication Channels 33
Communication Standard Formats 33
Standard Communications 33

Output Header Format 32

P
Performance Optimization Calls (Preliminary) 26

Q
Queue Types 27
Qword, description of 2

43TARARI CONFIDENTIAL CONTENT PROCESSOR DEVELOPMENT KIT AGENT DRIVER
Developer Guide

R
Raw Access Calls (Preliminary) 26
Read Multiple (Common command) 29
Registration Calls and Callbacks

CppAckAgtRemoval 19
CppRegisterAgentID 17, 18
CppRegisterAgent 18
CppUnregisterAgent 19
CppUnregisterAgentID 18

Restrictions, Agent Interface Compatibility 5
Roles

hardware developers 3
software developers 3

S
SAI

description of 2
Standard Agent Interface 38

SAI_Config (Op Code) 34
Set_Agent_InputQ_Bottom (Op Code) 34
Set_Agent_InputQ_Top (Op Code) 34
Set_Agent_OutputQ_Bottom (Op Code) 34
Set_Agent_OutputQ_Top (Op Code) 34
Set_DataQ_Bottom (Op Code) 34
Set_DataQ_Top (Op Code) 34
SOF, description of 2
Software developers, role of 3
Software Model 8
SRAM (Static RAM) 2
Standard Memory Use 27

T
Tail pointer 27
Terms 2
TMU, description of 2
TMU_Config (Op Code) 34
TMU_Ping (Op Code) 34
TMU_Reset (Op Code) 34

U
UA (User Application) 2
Update_Agent_InputQ_Head (Op Code) 34
Update_Agent_InputQ_Tail (Op Code) 34
Update_Agent_OutputQ_Head (Op Code) 34
Update_Agent_OutputQ_Tail (Op Code) 34

W
Windows CPP Architecture 40
Write Multiple (Common command) 29
Write Register (Common command) 29

INDEX TARARI CONFIDENTIAL
Notes

44

Notes

	Contents
	Concepts
	Introduction
	Terms

	CPDK Overview
	Agent Interface Compatibility
	Introduction to the Agent Bus Interface
	Introduction to the Standard Agent Interface

	Content Processing Platform
	Content Processing Controller
	Content Processing Engines
	Software Model
	CPP Data Flow
	CPP Reconfiguration Model
	CPP Base Device Driver (BDD)
	CPP Agent Device Drivers (ADDs)

	CPP Example
	BDD Responsibilities

	BDD to ADD Interface
	Overview
	Data Structures
	Architecture Dependent
	Architecture Independent

	Registration Calls and Callbacks
	Data Transfer Calls
	Performance Optimization Calls
	Raw Access Calls

	Standard Memory Use
	Basic Circular Queue Definition
	Queue Types
	Data Queue
	Input Header Format
	Common Commands
	Agent Specific Commands

	Output Header Format

	Standard Out-of-Band Communications
	Out-of-band Communication Channels
	Out-of-Band Communication Standard Formats
	Basic Format
	Out-of-Band Command Set

	Standard Agent Interface
	General Description
	Interrupts

	Linux CPP Architecture
	Data Structures
	API Calls

	Windows* CPP Architecture

	Index

